Elements of classical mechanics

Contents

II. (Last time) Open and closed: unbound and bound (hyperbolic and elliptic)
III. Three classical mechanics problems

Hooke's spring
Newton's apple
The jumper

Classification of orbits by H

$$
H=E_{k}+U=\frac{1}{2} m v^{2}-\frac{G M m}{r}
$$

Since $E_{k} \geq 0, U \rightarrow 0$ upon approaching infinity
$H<0$ bound orbits: forbidden to reach infinity
$H>0$ unbound orbits: allowed to reach infinity

"Black objects"

1793: John Michell

1795: Pierre Laplace

1974: Stephen Hawking: black holes are grey, emitting thermal radiation

"Black objects"

$$
H=0: \quad \frac{1}{2} m v_{e}^{2}-\frac{G M m}{R}=0
$$

v_{e} : initial velocity at the surface ("escape velocity")

Black holes

Consider the limit $v_{e}=c \quad$ (velocity of light)

$$
\frac{1}{2} m c^{2}-\frac{G M m}{R_{S}}=0: \quad R_{S}=\frac{2 G M}{c^{2}}
$$

Radius of a
Schwarzschild black hole

When does Newton's law of gravity apply?

Newton's law of gravitational attraction to a mass M applies, provided that
a) Distances \gg Schwarzschild radius of M
b) Accelerations >> cosmological background acceleration (defined by the velocity of light and the Hubble parameter)

Newton's law applies very well to the solar system. Small deviations in orbit of Mercury. (Small but important!)

Force and energy

Work and potential energy

a) $F_{s}=-F_{r}$
b) $\Delta E_{s}=W$

Newton's third law
Work performed stored in spring potential energy

Work and potential energy

$$
\Delta E_{s}=-\int_{0}^{\Delta l} F_{s} d s \quad \text { Newton's third law } \quad \Delta E_{s}=W
$$

$$
W=\int_{0}^{\Delta l} F_{r} d s
$$

Changes are assumed to be slow and conservative, neglecting kinetic energy in m and dissipation by friction

- example: linear spring

Hooke's law (1660): $\quad F_{s}=-k l$
k is spring constant: $[k]=\frac{[F]}{[l]}=\frac{\mathrm{g} \mathrm{cm} \mathrm{s}^{-2}}{\mathrm{~cm}}=\mathrm{g} \mathrm{s}^{-2}$

length of spring

- Aside: Young's modulus

Formulation of Hooke's law in dimensionless strain $\Delta \mathrm{L} / \mathrm{L}$

- strain-stress correlation

Young: linear relationship between stress and strain

$$
\begin{aligned}
F & =A \sigma \\
\sigma & =E \frac{\Delta l}{l}
\end{aligned}
$$

E is Young's modulus

- strain-stress correlation

Dimensional analysis: $[E]=\frac{[F / A]}{[\Delta l / l]}=\mathrm{g} \mathrm{cm}^{-1} \mathrm{~s}^{-2}$

Hooke's pendulum clock

Hooke: linear relationship between force and stretch

$$
\begin{aligned}
F & =k u \\
u & =l_{0}-l
\end{aligned}
$$

Hooke's pendulum clock

Gravitational force balanced by a stretch of the spring:

$$
\begin{gathered}
F_{0}=m g=k l_{0} \\
l=l_{0}-u \\
\Delta F=F-F_{0}=-k\left(l-l_{0}\right)=-k u
\end{gathered}
$$

Newton's third law $\Delta F=m a=m \ddot{u}$

$$
m \ddot{U}=-k u
$$

Hooke's pendulum clock

Time-harmonic deflection

Equation of motion $m \ddot{U}=-k u$
is a $2^{\text {nd }}$ order ordinary differential equation:

$$
u=A \cos \left(\omega t+\varphi_{0}\right), \quad \begin{array}{ll}
\omega=\sqrt{\frac{k}{m}}, \\
& P=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{m}{k}}
\end{array}
$$

Two integration constants: amplitude A, initial phase φ_{0}

The free falling apple

(c)2017 van Putten

Newton's description of particle motion

Newton's law of gravitation gives a precise description of particle motion and gravitation, culminating in Kepler's laws.

Newton uses his own differential and integral calculus:

1) Coordinates (polar or Cartesian) of particles in motion, for apples and moon's alike
2) Forces by contact or gravitation
3) Momentum vectors and tangent vectors
4) Trajectories as integrals of tangent vectors
5) Total energy and angular momentum as integrals of motion
(c)2017 van Putten

Newton's equivalence principle

Momentum and time rate-of-change

```
momentum = mass x velocity
```


Direction of conserved momentum
direction of time rate-of-change of momentum
Momentum is conserved along direction of vanishing forces
Force $=$ time rate-of-change of momentum

Vector calculus of position, velocity, momentum

$$
\begin{aligned}
& \bar{x}=\binom{x \text { coordinate position }}{y \text { coordinate position }}=\binom{x}{y} \\
& \bar{v}=\binom{x \text { velocity }}{y \text { velocity }}=\frac{d}{d t}\binom{x}{y}=\binom{d x / d t}{d y / d t}=\binom{\dot{x}}{\dot{y}} \\
& \bar{p}=m \bar{v}=\binom{x \text { momentum }}{y \text { momentum }}=m\binom{\dot{x}}{\dot{y}}
\end{aligned}
$$

Example: force inferred from trajectory

$$
\begin{gathered}
\bar{x}(t)=\binom{a-b t}{c-d t^{2}}, \bar{v}=\binom{\dot{x}}{\dot{y}}=\binom{\frac{d}{d t}(a-b t)}{\frac{d}{d t}\left(c-d t^{2}\right)}=-\binom{b}{2 d t} \\
\bar{p}=m \bar{v}=-m\binom{b}{2 d t} \\
\bar{F} \equiv \frac{d}{d t} \bar{p}=-m\binom{\frac{d}{d t}(b)}{\frac{d}{d t}(2 d t)}=-m\binom{0}{2 d}
\end{gathered}
$$

Question: is this force a contact force or a gravitational force?

Example: Newton's apple from the tree

velocity $\mathrm{d} u(t) / \mathrm{d} t$
area $A(t)$: vertical drop

Apple's free fall Initial Value Problem (IVP):

$$
\begin{aligned}
m \ddot{u}(\mathrm{t}) & =-m g \\
\mathrm{u}(0) & =H \\
\dot{\mathrm{u}}(0) & =0
\end{aligned}
$$

- free fall time

Integrate:

$$
\dot{\mathrm{u}}(\mathrm{t})-\dot{\mathrm{u}}(0)=-g t: \quad \dot{\mathrm{u}}(\mathrm{t})=-g t
$$

Integrate a second time:

$$
u(t)-u(0)=-\frac{1}{2} g t^{2}: \quad u(t)=H-\frac{1}{2} g t^{2}
$$

$$
u(t)=H-A \text { with vertical } \operatorname{drop} A(t)=1 / 2 g t^{2}
$$

Free fall time: $\quad u(T)=0: \quad T=\sqrt{\frac{2 H}{g}}$

The jumper

Jumper trajectory in coordinate space

- total flight time

Integrate once:

$$
\dot{\mathrm{u}}(\mathrm{t})-\dot{\mathrm{u}}(0)=-g t: \quad \dot{\mathrm{u}}(\mathrm{t})=V-g t
$$

Integrate a second time:

$$
u(t)-u(0)=V t-\frac{1}{2} g t^{2}: \quad u(t)=V t-\frac{1}{2} g t^{2}
$$

Time at maximal height
Total flight time

$$
\begin{array}{ll}
\dot{\mathrm{u}}(\mathrm{t})=0: & t_{*}=\frac{V}{g} \\
\mathrm{u}(\mathrm{t})=0: & T=\frac{2 V}{g}
\end{array}
$$

- jump height

Parabolic trajectory

$$
u(t)=V t-\frac{1}{2} g t^{2}=V T y(\tau), \quad y(\tau)=\tau(1-\tau)
$$

in dimensionless time: $\tau=\frac{t}{T}$
Parabolic curves: $\max y(\tau)=\frac{1}{4} \quad\left(\tau=\frac{1}{2}\right)$
Maximal height reached:

$$
\frac{1}{4} V T=\frac{V^{2}}{2 g}=\frac{E_{\mathrm{k}}}{m g}
$$

- turning point

$$
\begin{array}{cl}
H=E_{k}+U & \text { Conserved total energy } \\
E_{k}=\frac{1}{2} m v^{2} & \begin{array}{l}
\text { Kinetic energy, maximal when potential } \\
\text { energy is minimal }
\end{array} \\
U=m g z & \begin{array}{l}
\text { Potential energy, maximal when kinetic energy } \\
\text { is minimal (zero) }
\end{array} \\
H=\frac{1}{2} m v^{2}+m g z=\left\{\begin{array}{cl}
\frac{1}{2} m V^{2} & \text { jumper on the ground } \\
m g h & \text { jumper at maximal height } h
\end{array}\right.
\end{array}
$$

- maximal height at turning point

$$
\begin{aligned}
& H(0)=H(h): \\
& \frac{1}{2} m V^{2}+0=E_{k}+\left.U\right|_{z=0}=E_{k}+\left.U\right|_{z=h}=0+m g h \\
& m g h=\frac{1}{2} m V^{2}: \quad h=\frac{\frac{1}{2} m V^{2}}{m g}=\frac{V^{2}}{2 m g} \quad \text { once more }
\end{aligned}
$$

- duration of flying high

$$
\frac{1}{8}=\left(\tau-\frac{1}{2}\right)^{2}: \quad \tau_{ \pm}=\frac{1}{2} \pm \frac{1}{2 \sqrt{2}}
$$

Time of flight above one-half the maximum height is

$$
\frac{t_{+}-t_{-}}{T}=\tau_{+}-\tau_{-}=\frac{1}{\sqrt{2}} \cong 0.71
$$

In-class Assignment

Position vector $\bar{p}(t)=\binom{t}{\sqrt{1-t^{2}}}=t \boldsymbol{i}+\sqrt{1-t^{2}} \boldsymbol{j} \quad(-1<t<1)$
Tangent vector $\quad \bar{\tau}(t)=\frac{d \bar{p}(t)}{d t}$

1. Plot the trajectory in the two-dimensional plane (x, y), as \dagger traverses from -1 to 1.
2. Compute the tangent vector, and sketch the tangent vector to the trajectory for $t=-1,0,1$ in your plot.
3. Perform the substitution $t=\cos \varphi \quad(-\pi<\varphi<\pi)$

Give explicit expressions for $\bar{p}(\varphi), \quad \bar{\tau}(\varphi)$
4. What can you say about the angle between the position and tangent vector?

Aside: Kepler's orbits in polar coordinates

A's trajectory is an ellipse: $r+s=c \quad$ (c is some constant)

- polar coordinates

Write out:

$$
\left\{\begin{array}{l}
r^{2}=s^{2}+4 p s \cos \gamma+4 p^{2} \\
s \cos \gamma=r \cos \varphi-2 p \\
s=c-r
\end{array}\right.
$$

$$
r(\varphi)=\frac{\frac{1}{2} c-\frac{2 p^{2}}{c}}{1-\frac{2 p^{2}}{c} \cos \varphi}
$$

- ellipticity

$$
\begin{aligned}
& A_{1}: 2(a+p)-2 p=c \\
& A_{2}: 2 \sqrt{p^{2}+b^{2}}=c \\
& a=\sqrt{p^{2}+b^{2}}, c=2 a
\end{aligned}
$$

Ellipticity e: $p \equiv e a$

$$
r(\varphi)=a \frac{1-e^{2}}{1-e \cos \varphi}
$$

In Newton's theory, $u=1 / r$ is harmonic in phi, unifying elliptic and hyperbolic orbits.

