
(c)2017 van Putten 1

Elements of classical mechanics
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Classification of orbits by H

H = Ek +U =
1
2
mv2 − GMm

r

Since Ek ≥ 0,U→ 0

H < 0
H > 0

bound orbits: forbidden to reach infinity

upon approaching infinity

unbound orbits: allowed to reach infinity
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“Black objects” 

1793: John Michell 

1795: Pierre Laplace 

1915: Karl Schwarzschild (exact solution) 

1967: John Wheeler’s “black hole” 

1974: Stephen Hawking: black holes are grey, 
emitting thermal radiation 
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“Black objects” 

H = 0 : 1
2
mve

2 −
GMm
R

= 0

ve : initial velocity at the surface (“escape velocity”)

H<0: fall back

H>0: successful escapeH=0: “trapped 
surface” within 
which H < 0
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🙂
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Black holes 

1
2
mc2 − GMm

RS
= 0 :

ve = cConsider the limit (velocity of light)

RS =
2GM
c2

R = RS Radius of a 

Schwarzschild black hole
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When does Newton’s law of gravity apply?

Newton’s law of gravitational attraction to a mass M applies, 
provided that

a) Distances >> Schwarzschild radius of M 

b) Accelerations >> cosmological background acceleration 
(defined by the velocity of light and the Hubble parameter) 

Newton’s law applies very well to the solar system.
Small deviations in orbit of Mercury. (Small but important!)
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Force and energy

m
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Work and potential energy

rope
spring

m pull

wall

a) Fs = −Fr

Fs Fr

Newton’s third law

b)
Work performed stored in 
spring potential energyΔEs =W

W
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Work and potential energy

ΔEs = − Fs
0

Δl

∫ ds

W = Fr
0

Δl

∫ ds

Newton’s third law ΔEs =W

Δl

Changes are assumed to be slow and conservative, 
neglecting kinetic energy in m and dissipation by friction
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— example: linear spring

Fs = −kl

k is spring constant:

length of spring 

force 
on the 
spring

linear range

over-stretched, 
nonlinear

[k]= [F]
[l]

=
g cms−2

cm
= g s−2

Hooke’s law (1660):
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— Aside: Young’s modulus

Formulation of 
Hooke’s law in 
dimensionless 
strain ΔL/L
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— strain-stress correlation

Young: linear relationship between stress and strain

solid material
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F = Aσ

σ = E Δl
l

E is Young’s modulus
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— strain-stress correlation

dimensionless strain  

stress linear range

over-stretched, 
nonlinear

[E]= [F / A]
[Δl / l]

= g cm−1s−2

solid material

E large: stiff material 
E small: soft material
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Dimensional analysis:



15

Hooke’s pendulum clock 

u

Hooke: linear relationship between 
force and stretch 

length l
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F = ku

u = l0 − l
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Hooke’s pendulum clock 

u

u(t)
t

F0 = mg = kl0
Gravitational force balanced by a stretch of the spring:

length l

l = l0 − u
ΔF = F − F0 = −k(l − l0 ) = −ku

 ΔF = ma = −m&&uNewton’s third law
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Ü

 m&&u = −kuÜ
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Hooke’s pendulum clock 

u

u(t)
t

Time-harmonic deflection

length l

u = Acos ωt +ϕ0( ),

Equation of motion

is a 2nd order ordinary differential equation:

Two integration constants: amplitude A, initial phase ϕ0

ω =
k
m
,

P = 2π
ω

= 2π m
k
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 m&&u = −kuÜ
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The free falling apple
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Newton’s description of particle motion
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            Newton’s law of gravitation gives a precise description of 
            particle motion and gravitation, culminating in Kepler’s laws.

            Newton uses his own differential and integral calculus:

1) Coordinates (polar or Cartesian) of particles in motion, for apples and moon’s alike

2) Forces by contact or gravitation 

3) Momentum vectors and tangent vectors

4) Trajectories as integrals of tangent vectors

5) Total energy and angular momentum as integrals of motion
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Newton’s equivalence principle
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🍎

pull down 
contact 
force

🍎

pull down 
gravitational 
force

Force = mass x acceleration

Acceleration = force/inertial 
mass, 
regardless of the origin of force, 
whether it be a contact or 
gravitational force, or otherwise
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Momentum and time rate-of-change
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🍎

Momentum is conserved along direction of vanishing forces 

Force = time rate-of-change of momentum 

direction of time rate-of-change of momentum

Direction of 
conserved 
momentum

momentum = mass x velocity
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Vector calculus of position, velocity, momentum
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x =
x coordinate position
y coordinate position

⎛

⎝
⎜

⎞

⎠
⎟ =

x
y

⎛

⎝
⎜

⎞

⎠
⎟

v =
x velocity
y velocity

⎛

⎝
⎜

⎞

⎠
⎟ =

d
dt

x
y

⎛

⎝
⎜

⎞

⎠
⎟ =

dx / dt
dy / dt

⎛

⎝
⎜

⎞

⎠
⎟ =

!x
!y

⎛

⎝
⎜

⎞

⎠
⎟

p = mv = x momentum
y momentum

⎛

⎝
⎜

⎞

⎠
⎟ = m

!x
!y

⎛

⎝
⎜

⎞

⎠
⎟
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Example: force inferred from trajectory
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x (t) = a − bt
c − dt 2

⎛

⎝⎜
⎞

⎠⎟
, v =

!x
!y

⎛

⎝
⎜

⎞

⎠
⎟ =

d
dt
(a − bt)

d
dt
(c − dt 2 )

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= − b
2dt

⎛
⎝⎜

⎞
⎠⎟

p = mv = −m b
2dt

⎛
⎝⎜

⎞
⎠⎟

F ≡ d
dt
p = −m

d
dt
(b)

d
dt
(2dt)

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= −m 0
2d

⎛
⎝⎜

⎞
⎠⎟

Question: is this force a contact force or a gravitational force?
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Example: Newton’s apple from the tree

height u(t)

Apple’s free fall Initial 
Value Problem  (IVP):

velocity du(t)/dt

time t
T

fall (drop) =

area A(t): vertical 
drop

area A(t) 
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m&&u = −mg
u(0) = H
&u(0) = 0

⎧

⎨
⎪

⎩
⎪

Ü 

ů(0)
ů(0)
mů(t)=-mg 

🍎
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Integrate:

Integrate a second time:

u(t)− u(0) = − 1
2
gt 2 : u(t) = H −

1
2
gt 2

u(T ) = 0 : T =
2H
g

Free fall time:

with vertical drop A(t) = ½ g t2  u(t) = H – A  

(c)2017 van Putten

 &u(t)− &u(0) = −gt : &u(t) = −gtů(t) - ů(0) ů(t) 

ů(t) 

🍎

— free fall time
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http://www.wired.com/2014/04/basketball-physics/

The jumper
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m&&u = −mg
u(0) = 0
&u(0) =V

⎧

⎨
⎪

⎩
⎪

27

Jumper trajectory in coordinate space

Jumper’s IVP:

velocity  
du(t)/dt

T

area A(t)

height u(t)

time t
jump height area A(t) 

(c)2017 van Putten

ů(0) 
ů(0) 
mů(t)=-mg 
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— total flight time

Integrate once:

 &u(t)− &u(0) = −gt : &u(t) =V − gt
Integrate a second time:

u(t)− u(0) =Vt − 1
2
gt 2 : u(t) =Vt − 1

2
gt 2

u(T ) = 0 : T =
2V
gTotal flight time

 
&u(t*) = 0 : t* =

V
g

Time at maximal height

(c)2017 van Putten

ů(t) - ů(0) ů(t) 

ů(t) 

ů(t) 
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— jump height

u(t) =Vt − 1
2
gt 2 =VT y τ( ), y τ( ) = τ 1−τ( )

Parabolic trajectory

τ =
t
T

   in dimensionless time:

Parabolic curves: max y τ( ) = 1
4

τ =
1
2

⎛
⎝⎜

⎞
⎠⎟

 Maximal height reached:
1
4
VT =

V 2

2g

(c)2017 van Putten

=
Ek
mg
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- turning point
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H = Ek +U

Ek =
1
2
mv2

U = mgz

H = 1
2
mv2 +mgz =

1
2
mV 2

mgh

⎧

⎨
⎪

⎩
⎪

Conserved total energy

Kinetic energy, maximal when potential 
energy is minimal

Potential energy, maximal when kinetic energy 
is minimal (zero)

jumper on the ground

jumper at maximal height h
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- maximal height at turning point
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H (0) = H (h) :
1
2
mV 2 + 0 = Ek +U z=0 = Ek +U z=h

= 0 +mgh

mgh = 1
2
mV 2 : h =

1
2
mV 2

mg
= V 2

2mg
once more
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— duration of flying high

y(τ ) = 1
8 y = τ (1−τ ) = 1

4
− τ −

1
2

⎛
⎝⎜

⎞
⎠⎟

2

1
8
= τ −

1
2

⎛
⎝⎜

⎞
⎠⎟

2

: τ ± =
1
2
±

1
2 2

Solve

t+ − t−
T

= τ + −τ− =
1
2
≅ 0.71

Time of flight above one-half the maximum height is 

1/4

1/8

u(t)

t

H

H/2

y(τ )

τ
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In-class Assignment 
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p(t) =
t
1− t 2

⎛

⎝
⎜

⎞

⎠
⎟ = t i + 1− t 2 j −1< t <1( )

1.  Plot the trajectory in the two-dimensional plane (x,y), as t traverses 
from -1 to 1. 

2. Compute the tangent vector, and sketch the tangent vector to the 
trajectory for t=-1,0,1 in your plot.

τ (t) = dp(t)
dt

Position vector

Tangent vector
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3. Perform the substitution 

4. What can you say about the angle between the position and tangent vector?

t = cosϕ −π <ϕ < π( )

Give explicit expressions for p ϕ( ), τ ϕ( )



Aside: Kepler’s orbits in polar coordinates

A’s trajectory is an ellipse:  r + s = c   (c is some constant)

-p p
x-axis

o
ϕ γ

A

r s
r sinϕ = ssinγ
r cosϕ = 2p + l cosγ
⎧
⎨
⎩

(c)2017 van Putten
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— polar coordinates 

-p p
x-axis

o
ϕ γ

A

r s
r2 = s2 + 4 pscosγ + 4 p2

scosγ = r cosϕ − 2p
s = c − r

⎧

⎨
⎪

⎩
⎪

Write out:

r(ϕ ) =

1
2
c − 2p

2

c

1− 2p
2

c
cosϕ

(c)2017 van Putten
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r(ϕ ) = a 1− e2

1− ecosϕ

— ellipticity

-p p
x-axiso a

A1 : 2(a + p)− 2p = c

A2 : 2 p2 + b2 = c

A1

A2

p ≡ ea

b a = p2 + b2 , c = 2a

Ellipticity e: 

p2 + b2
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In Newton’s theory, u=1/r is harmonic in phi, unifying elliptic and 
hyperbolic orbits.
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